Hexahistidine-tagged maltose-binding protein as a fusion partner for the production of soluble recombinant proteins in Escherichia coli.

نویسندگان

  • Brian P Austin
  • Sreedevi Nallamsetty
  • David S Waugh
چکیده

Insolubility of recombinant proteins in Escherichia coli is a major impediment to their production for structural and functional studies. One way to circumvent this problem is to fuse an aggregation-prone protein to a highly soluble partner. E. coli maltose-binding protein (MBP) has emerged as one of the most effective solubilizing agents. In this chapter, we describe how to construct combinatorially-tagged His(6)MBP fusion proteins by recombinational cloning and how to evaluate their yield and solubility. We also describe a procedure to determine how efficiently a His(6)MBP fusion protein is cleaved by tobacco etch virus (TEV) protease in E. coli and a method to assess the solubility of the target protein after it has been separated from His(6)MBP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancing the solubility of recombinant proteins in Escherichia coli by using hexahistidine-tagged maltose-binding protein as a fusion partner.

In the field of biotechnology, fusing recombinant proteins to highly soluble partners is a common practice for overcoming aggregation in Escherichia coli. E. coli maltose-binding protein (MBP) has been recognized as one of the most effective solubilizing agents, having frequently been observed to improve the yield, enhance the solubility, and promote the proper folding of its fusion partners. T...

متن کامل

Synthesis and Production of Sweet-Tasting Protein in E. coli and Purification by Amylose Resin

A sweet water-soluble protein that reminds stable over wide ranges of temperature and pH, Brazzein has various applications. Its tastes like cane sugar but have no calories. However, the extraction of brazzein from its natural source is expensive and not applicable. In this study we used recombinant DNA technology to provide an alternative option for cheaper mass production of brazzein. A brazz...

متن کامل

Gateway vectors for the production of combinatorially-tagged His6-MBP fusion proteins in the cytoplasm and periplasm of Escherichia coli.

Many proteins that accumulate in the form of insoluble aggregates when they are overproduced in Escherichia coli can be rendered soluble by fusing them to E. coli maltose binding protein (MBP), and this will often enable them to fold in to their biologically active conformations. Yet, although it is an excellent solubility enhancer, MBP is not a particularly good affinity tag for protein purifi...

متن کامل

Efficient E. coli Expression Strategies for Production of Soluble Human Crystallin ALDH3A1

Aldehyde dehydrogenase 3A1 (ALDH3A1) is a recently characterized corneal crystallin with its exact functions still being unclear. Expressing recombinant human ALDH3A1 has been difficult in Escherichia coli (E. coli) because of low solubility, yield and insufficient purity issues. In this report, we compared different E. coli expression strategies (namely the maltose binding protein; MBP- and th...

متن کامل

A generic method for the production of recombinant proteins in Escherichia coli using a dual hexahistidine-maltose-binding protein affinity tag.

A generic protocol that utilizes a dual hexahistidine-maltose-binding protein (His6-MBP) affinity tag has been developed for the production of recombinant proteins in Escherichia coli. The MBP moiety improves the yield and enhances the solubility of the passenger protein while the His-tag facilitates its purification. The fusion protein (His6-MBP-passenger) is purified by immobilized metal affi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Methods in molecular biology

دوره 498  شماره 

صفحات  -

تاریخ انتشار 2009